A Dynamic Timeout Scheme for Wormhole Routing Networks

Po-Chi Hu
Lucent Technologies Inc.
200 Schulz Drive
Red Bank, NJ 07701

Abstract

In a previous paper [1], we proposed and analyzed a
timeout scheme to alleviate network congestion and thus im-
prove the throughput for a wormhole routing network in lo-
cal area network (LAN) environments. This timeout scheme
was proved to be effective, but the optimal timeout value
varies with packet size, propagation delay, and other network
parameters. To tune the timeout value automatically, two
dynamic timeout methods are presented in this paper. The
first method, called “Immediate Timeout Or Wait” (ITOW),
compares the costs for timeout and waiting. Thus, it de-
cides to reject a worm immediately or to allow the worm to
wait until the timeout occurs. The second method, called
“Cost Equilibrium Point” (CEP), sets the timeout value to
the point where the timeout and waiting costs are the same,
thereby determining the timeout value automatically. From
simulation, the results show that the first method simplifies
the choice of the timeout value and the second method per-
forms well if a cost factor for timeout is given properly. Both
methods improve the network throughput significantly.

1 Introduction

Wormhole routing is a simple, low-cost switching scheme
often used for supercomputer interconnections. It has the
merits of low latency, low cost, and simple implementation.
Recently wormhole routing has been used as the switch-
ing scheme for Local area networks (LANs). One such ef-
fort is Myricom’s Myrinet (2], which has been adopted as
the LAN infrastructure for the Supercomputer SuperNet
(SSN), a research project being conducted at UCLA, JPL
and Aerospace Corp. [3, 4].

1.1 Wormbhole Routing

Wormbhole routing was developed from the earlier idea
of cut-through switching [5], and was first introduced in [6].
A wormbhole routing network is composed of several switches
and hosts. Usually, wormhole routing switches have rela-
tively small buffers. As opposed to store-and-forward switch-
ing, as soon as a packet header (or its routing information)
is received, this packet is forwarded to the next switch be-
fore it is completely received; however, if the outgoing link
to the next switch is busy serving another packet, then the

tThis work was supported by the Advanced Research Projects
Agency, ARPA/CSTO, under Contract DABT63-93-C-0055 “The Dis-
tributed Supercomputer Supernet — A Multi Service Optical Intelligent
Network”.

0-7803-3925-8/97 $10.00 ©1997 IEEE

Leonard Kleinrock®

Department of Computer Science
University of California, Los Angeles

Los Angeles, CA 90095-1596

Blocking

(flow control)
stop

r=3: input buffer (empty)
g4 input buffer (full)
1: aflit of data

H : Host
SW : Switch

Figure 1. An illustration of wormhole routing.

packet is blocked and resides in the network (see figure 1)
until the outgoing link is available. In this case, called block-
ing, the switch must inform the previous up-stream switch
to stop transmission (i.e., it exercises back-pressure flow con-
trol) due to the limited size of buffers, as shown in figure 1. A
packet (which is also called a worm) may be buffered along
a chain of switching nodes when blocked. With wormhole
routing, deadlocks are possible unless a deadlock-free rout-
ing strategy is employed. We measure packet length by flits,
which is the amount of data that can be transmitted in one
time unit. For example, the 640Mbps Myrinet [2] has one
byte per flit lasting 12.5ns. A survey of wormhole routing
can be found in [7].

1.2 Timeout Reset

Wormbhole routing exhibits very low network latency
through its use of cut-through switching [5]. However, a
high-speed LAN requires not only low latency but also very
high throughput, which is not easy to achieve with worm-
hole routing because of the blocking problem. Blocking oc-
curs when there are two packets contending for the same
output link; one of them has to be stalled, which conse-
quently reduces the efficiency of links that are occupied by
the blocked packet. This degrades the achievable network
throughput. To overcome this throughput limitation, a de-
terministic timeout scheme was proposed in our earlier pa-
per [1]. Whenever a worm head reaches a switch, a timer
starts counting how long this worm resides at this switch
while waiting for its outgoing link to become available (at

1406

which time it advances to the next switch or host node).
If this “residence time” exceeds a timeout threshold, then
a timeout event is triggered; a switch at which timeout oc-
curs will then clear all buffers occupied by this worm and
will issue a timeout reset signal backward to the upstream
node from which this worm came. A switch which receives
a timeout reset signal will pass this signal further upstream
and will also free the outgoing link and any buffers occu-
pied by this timed-out worm. This process continues until
the timeout reset signal reaches the source host where the
worm was generated. (We assume that a switch can always
send the timeout reset signal upstream even if the tail of the
worm has already left this switch). The source host, after
receiving the timeout reset signal, will stop the transmission
of this worm if the transmission is still in progress, and will
insert the worm back into the tail of this host’s packet queue
so that it will be retransmitted later.

In the deterministic timeout scheme, all timeout values
are the same, no matter how far the worm has traveled or
how large the worm is. However, the timeout value may be
set dynamically to increase the network throughput and to
tune the timeout value automatically. This is called dynamic
limeout, and is presented in this paper.

To tune the timeout value automatically, switches must
be able to collect measurements of some basic parameters
and to predict their future values. To maintain a sim-
ple structure of switches, only primitive functions, such as
recording the link occupancy time for a worm and count-
ing the number of worms currently waiting, are considered.
More complex and intelligent functions, such as counting the
number of worms blocked along the path and passing this in-
formation to other switches, are not examined in this paper.

1.3 The Simulation Experiment

In this paper, we test the performance of two dynamic
timeout, schemes by simulation. To make the simulation
study less complicated, we use a torus as the network topol-
ogy due to its nice symmetry property. We assume that each
switch (SW) has eight in/out ports and four of them are con-
nected to hosts (H). A 3 x 3 example is shown in figure 2, in
which there are 9 switches and 36 hosts.

The simulator performs discrete-event simulations at the
flit level with the following assumptions:

e Worms are generated as a Poisson process, and their
sizes have an exponential distribution.

e Worm generation rates are identical at all hosts. More-
over, the distance to a host is uniformly chosen from
among all feasible distances. Using the 3 x 3 torus net-
work as an example, we make one-third of the traffic
two-hops long, another one-third three-hops long, and
the last one-third four-hops long, (similarly for 5 x 5
and 7 x 7 networks). Hosts at the same distance from
the source are selected as the destination according to a
uniform distribution.

o All possible shortest paths are equally chosen by the
routing procedure.

Figure 2: An example of network configuration: 3 x 3 torus
topology.

e The bandwidth consumed by flow control and timeout
signals is negligible.

o First-come-first-serve (FCFS) queueing discipline is
used for resolving link contention.

In all simulations, the link propagation delay is set to
10 units of time, which corresponds to a link length of 22.5
meters in Myrinet$.

In the following section, we first present the assumed
primitive functions, and explain how they can be imple-
mented. In section 3, we discuss the methods for estimating
the costs for timeout and waiting. With these estimated
costs, two dynamic timeout schemes are proposed and inves-
tigated in section 4. The conclusion is in section 5.

2 Assumed Switch Functions

To make the dynamic timeout practical for a low-cost
wormhole routing switch, only some simple and local func-
tions are assumed. These functions are:

o Estimate the average link occupancy time, which is the
time interval that a served worm holds this link. It is
also referred as the link holding time.

e Count how many worms are waiting for a particular link.
This information is required to estimate the link waiting
time, which is the time interval from when a worm ar-
rives until it attains this output link. The link waiting
time is actually the worm’s blocking time at this switch.

e Retrieve and update the information carried at the
worm head, such as worm size and the distance that
the worm has traveled.

2.1 Estimating the Average Link Occupancy
Time

To estimate the average link occupancy time, a switch
first needs to be able to record the link occupancy time of a

$The myrinet link bandwidth is 640Mbps. Each flit is one byte of
data, which gives us the time unit, 12.5ns. However, the propagation
velocity in a Myrinet cable is about 0.6c, where c is the speed of light.
Hence, 0.6¢ x 12.5ns = 22.5m.

1407

worm. When a worm seizes an output link, a timer associ-
ated with this output link is reset, and keeps counting until
the tail of the worm leaves this cutput link or it receives a
timeout signal. Let z; be the recorded link occupancy time of
the ith worm on a particular output link. Then, the average
link occupancy time for this link is estimated as,

(k- 1)0kz'—1+m (1)

0; =

where O; denotes the estimated average link occupancy time
after the ith worm is served. k is a parameter we can select;
it represents the weight of the newly recorded link occupancy
time.

Equation (1) has the property that the estimated link oc-
cupancy time adjusts as the network condition changes, and
the change rate is determined by the parameter k. Also, it
has the advantage of only requiring two variables, O; and z;.
Without retaining all link occupancy times of past worms, it
is easy to implement.

2.2 Counting the Number of Waiting Worms

This can be easily accomplished by checking the headers
of worms at the heads of all input buffers. Counting is initi-
ated when a worm comes to the head of an input buffer and
wishes to know its estimated waiting time. Alternatively,
a counter associated with each output link may be used to
store the number of waiting worms. This counter is updated
when a worm arrives to the head of an input port and points
to this output link (add one to the counter), or when the
served worm releases this output link (decrease one from the
counter).

2.3 Collecting the Worm’s Information

Information such as worm size, the distance that it has
traveled, or the distance that remains to its destination have
effects on the optimal timeout value. This information can
be derived quickly if they are in the worm’s header, and if so,
this facilitates updating the worms at each hop. Certainly,
reading all of this information adds some complexity, but
not much. It only requires a switch to read a few more bytes
of the worm head before it determines the timeout value.
In addition, updating the worm header simply involves in-
crementing or decrementing the distance counter that keeps
track of how far the worm has traveled or how much further
it must go.

3 Cost Estimation

With the above described information collected, costs
for timeout and waiting can be estimated. Cost is defined
as the number of flits that could have been transmitted on
links but were not due to timeout or waiting. Based on these
estimated costs, a switch can determine the reaction to an
arriving worm.

First we have to determine the cost for a timeout. Simi-
larly, we must determine the cost for waiting. When a time-
out occurs, a blocked worm is rejected and the links it holds
are freed. Consequently, timeout both saves bandwidth, and

1408

also wastes bandwidth that has been utilized by the timeout-
rejected worm. This waste of bandwidth is the cost for time-
out. Thus, Cp, the cost for timeout is estimated as (see
figure 3):

Cp=alpyD (2)

where 1}, denotes the average duration of time that a link is
held by the worm, D is the distance (number of hops) that
the worm head has traveled, and « is a constant used to
include other cost factors, such as the blocking time at each
hop and the timeout-retransmissions that occur prior to this
hop.

worm head position

timeout

hop D

earlier timeout retransmissions

Source

S Time

blocking

Figure 3: An illustration of timeout cost.

To be more specific, the cost for timeout is illustrated in
figure 4, and calculated using the following equations:

: N
Crp = au%—iMﬂ if D> %
at,D otherwise

(4)

where 7, is the propagation delay on each link, L (time units)
is the worm size divided by link capacity, and N; is the num-
ber of links that the worm can spread over.

Similarly, the cost for waiting, Cw, is the amount of
bandwidth wasted while the worm is waiting. It is derived
as (see figure 5):

Cor — { TiN,N; if D> N
W= otherwise

TiN, D (5)
where T; is the average link occupancy time estimated in
section 2.1 (i.e., O;), and N,, is the number of worms waiting
for the same output link.

4 Timeout Strategies

We tested two strategies that determine the timeout
value. The first one is called “ITOW” (Immediate Time-
out Or Wait), and the second one is called “CEP” (Cost
Equilibrium Point).

4.1 Immediate Timeout Or Wait (ITOW)

With this strategy, timeout occurs immediately if a
switch finds that the arrival worm has the estimated cost for
timeout less than for waiting. The motivation of this imme-
diate rejection comes from the following scenario. Consider

Caset1: D> N, /2

worm head position

Case2: D N;/2
worm head position

timeout timeout
b— L —
hopD \/* . hop D
I
]
'D
1
]
i
Source \£ : - Source —— : -
L — Time b 2D 1 Time
> Wasted bandwidth due to timeout
Figure 4: A detailed illustration of timeout cost.
Case 1: D> N, worm head Case2: D g N, worm head
position position
hop D hop D
worm tail
worm tail
Source Source L) o
b—L— Time F—————————— L+ N} Tj————— Tinte

: Wasted bandwidth due to waiting

Figure 5: An illustration of waiting cost.

the situation that a blocked worm will get timed-out eventu-
ally. Instead of rejecting the worm after the timeout period,
why not reject the worm immediately? To reject a worm
sooner saves the bandwidth wasted by the waiting worm. If
the estimated cost for waiting is less than for a timeout, the
blocked worm is allowed to wait up to the timeout period.
In this case, a timeout is still required to prevent inaccurate
cost prediction and deadlock.

By simulation, the performance of this strategy is pre-
sented in figures 6 and 7. Figure 6 shows that the network
throughput is quite stable even though the timeout value
varies from 10 to 100. In addition, this scheme outperforms
the deterministic timeout. Clearly, ITOW improves the net-
work throughput significantly and eases the choice of timeout
value.

Figure 7 shows the network throughput with different
timeout cost factors. It appears that the optimal cost factor
is about 6.0 for the 7 x 7 and 9.0 for the 5 x 5 torus case.

4.2 Cost Equilibrium Point (CEP)

CEP lets the timeout value be determined automatically
by the switches. CEP sets the timeout value, 7, at the point
where the estimated cost for timeout is equal to the estimated
cost for waiting (hence the name, Cost Equilibrium Point).

Thus,
{ if D> N,
T =

otherwise

(6)

off2?

1409

Throughput (flits/time unit)

oF, e 5x5 ITOW:- -
L e 5x5 deterministic timeout—e—
8 R . 7X7 deterministic timeout %
[T —_— ~'-~~-17X7 ITOW - @
e
0 20 40 60 80 100 120 140

Timeout (time units)

Figure 6: Throughput vs. timeout (torus, average worm size
= 50 flits, propagation delay = 10 time units, o = 10).

This timeout setting tries to limit the worst case to have
its cost be less than twice the optimal, no matter what the
waiting time distribution is for the output link. However, the
cost factor, « still needs to be chosen properly to optimize
network performance.

By simulation, figure 8 shows that network throughput
is optimized when the timeout cost factor is 3.0 for the 7 x 7
torus case. A similar result is found for the 5 x 5 case, as

22 T T T T T T T T T

, 7x7 torus e
PN S SO N BRI S5x5torus --+-. 7

18 s e

Throughput (flits/time unit)

0 5 10 15 20 25 30 35 40 45 50
Cost Factor (o)

Figure 7: Throughput vs. cost factor « (7T x T torus, average
worm size = 50 flits, propagation delay = 10 time units,
timeout = 40 time units).

shown in figure 8.

22 l«; T T T T r . . ; .
2 20 + g"’ \(5x5 Torus -~~~ |
g J :\’"‘“‘x. 7x7 Torus — + —
] 18 "t"' » '\'\._]
-g ﬂ ‘., - h ‘\x\
S 16 i; A ... |
S LD e
s s V%
£ 14f N S N]
P 1 ~. .
a. 12 ~ - —y]
L i .. .
g 10 { - - e
[«] -
£ b ~-
£ o .

6 i 1 L 1 ! 1 L , R

0 5 10 15 20 25 30 35 40 45 50
Cost Factor

Figure 8: Throughput vs. cost factor a (torus, average worm
size = 50 flits, propagation delay = 10 time units).

Comparing CEP and ITOW, we find that CEP outper-
forms ITOW slightly if the cost factor, «, is chosen prop-
erly. However, CEP is more sensitive to the cost factor than
ITOW. Both improve the network throughput over the de-
terministic timeout significantly.

5 Summary and Future Work

In this paper, we have presented methods to perform
timeouts dynamically. Two strategies are discussed: I'TOW
(Immediate Timeout Or Wait) and CEP (Cost Equilibrium
Point). The results show that ITOW eases the choice of
the timeout value and is less sensitive to the cost factor
than CEP. However, CEP sets the timeout value automat-
ically without the knowledge of the average link occupancy
time. Both improve the network throughput significantly

when compared to the deterministic timeout.

Further investigation is necessary. First, the cost factor,
o should be refined for different network environments. As
the worm travels more hops, the number of retransmissions
required for the worm to reach the timeout node will increase.
This implies that the cost factor should increase as the worm
travels farther. One must also study the effect of k, the
weighting for recently recorded link occupancy times. If the
link occupancy time is highly correlated between subsequent
worms, k should be decreased to reflect the changing of the
average link occupancy time. On the other hand, if link
occupancy time is mutually independent, k should be larger
so it will not be affected by a single case. A good choice of &
could make the cost prediction more accurate and therefore,
improve the network performance.

References

(1] Po-Chi Hu and L. Kleinrock. “A Queueing Model for
Wormbhole Routing with Timeout”. In Proceedings of the
4th International Conference on Computer Communica-
tions and Nelworks, pages 584-593, Las Vegas, NV, U.S.,
September 1995.

[2] C. Seitz, D. Cohen, and R. Felderman. “Myrinet—A
Gigabit-per-second Local-Area Network”. IEEE Micro,
15(1):29-36, February 1995.

[3] et. al L. Kleinrock. “The Supercomputer Supernet:
A Scalable Distributed Terabit Network”. Journal of
High Speed Networks: special issue on Oplical Networks,
4(4):407-24, 1995.

[4] et. al L. Kleinrock. “The Supercomputer Supernet
Testbed: A WDM Based Supercomputer Interconnect”.
to appear in IEEE JSAC/JLWT joint special issue on
Multiple Wavelength Optical Technologies and Networks,
1995.

[5] P. Kermani and L. Kleinrock. “Virtual cut-through: A
New Computer Communication Switching Technique”.
Computer Networks, 3:267-289, 1979.

[6] C. Seitz et al. “The Hypercube Communications Chip”.
Technical report, Dep. Computer Science, California
Inst., March 1985. Display File 5128:DF:85.

[71 L. M. Ni and P. K. McKinley. “A Survey of Worm-
hole Routing Techniques in Direct Networks”. Computer,
pages 62-76, February 1993.

1410

